search

Sabtu, 04 September 2010

DC CHOPPER, BUCK AND BOOST

DC CHOPPER, BUCK AND BOOST

Ada dua macam cara pengolahan daya: tipe linier dan tipe peralihan (switching). Tergantung dari jenis aplikasinya, masing masing tipe memiliki kelebihan dan kekurangan. Namun dalam perkembangannya, tipe peralihan nampak semakin terlihat kepopulerannya terutama karena kelebihannya dalam mengubah daya secara jauh lebih efisien dan pemakaian komponen yang ukurannya lebih kecil. Dalam pembahasan ini, akan dibahas beberapa metodologi yang termasuk dalam tipe peralihan, khususnya yang digunakan untuk mengubah daya DC-DC.
Pengubah daya DC-DC (DC-DC Converter) tipe peralihan atau dikenal juga dengan sebutan DC Chopper dimanfaatkan terutama untuk penyediaan tegangan keluaran DC yang bervariasi besarannya sesuai dengan permintaan pada beban. Daya masukan dari proses DC-DC tersebut adalah berasal dari sumber daya DC yang biasanya memiliki tegangan masukan yang tetap. Pada dasarnya, penghasilan tegangan keluaran DC yang ingin dicapai adalah dengan cara pengaturan lamanya waktu penghubungan antara sisi keluaran dan sisi masukan pada rangkaian yang sama. Komponen yang digunakan untuk menjalankan fungsi penghubung tersebut tidak lain adalah switch (solid state electronic switch) seperti misalnya Thyristor, MOSFET, IGBT, GTO. Secara umum ada dua fungsi pengoperasian dari DC Chopper yaitu penaikan tegangan dimana tegangan keluaran yang dihasilkan lebih tinggi dari tegangan masukan, dan penurunan tegangan dimana tegangan keluaran lebih rendah dari tegangan masukan.

Prinsip dasar Pengubah DC-DC Tipe Peralihan

Untuk lebih memahami keuntungan dari tipe peralihan, kita lihat kembali prinsip pengubahan daya DC-DC tipe linier seperti terlihat pada Gambar 1.

Gambar 1. Pengubah tipe linier
Pada tipe linier, pengaturan tegangan keluaran dicapai dengan menyesuaikan arus pada beban yang besarannya tergantung dari besar arus pada base-nya transistor:
V0 = IL . RL (1)
Dengan demikian pada tipe linier, fungsi transistor menyerupai tahanan yang dapat diubah ubah besarannya seperti yang juga terlihat dalam Gambar 1. Lebih jauh lagi, transistor yang digunakan hanya dapat dioperasikan pada batasan liniernya (linear region) dan tidak melebihi batasan cutoff dan selebihnya (saturation region). Maka dari itu tipe ini dikenal dengan tipe linier. Walau tipe linier merupakan cara termudah untuk mencapai tegangan keluaran yang bervariasi, namun kurang diminati pada aplikasi daya karena tingginya daya yang hilang (power loss) pada transistor (VCE*IL) sehingga berakibat rendahnya efisiensi. Sebagai alternatif, maka muncul tipe peralihan yang pada prinsipnya dapat dilihat pada Gambar 2.

Gambar 2. Pengubah tipe peralihan
Pada tipe peralihan, terlihat fungsi transistor sebagai electronic switch yang dapat dibuka (off) dan ditutup (on). Dengan asumsi bahwa switch tersebut ideal, jika switch ditutup maka tegangan keluaran akan sama dengan tegangan masukan, sedangkan jika switch dibuka maka tegangan keluaran akan menjadi nol. Dengan demikian tegangan keluaran yang dihasilkan akan berbentuk pulsa seperti pada Gambar 3.

Gambar 3. Tegangan keluaran
Besaran rata rata atau komponen DC dari tegangan keluaran dapat diturunkan dari persamaan berikut:
( 2 )(2)
Dari persamaan diatas terlihat bahwa tegangan keluaran DC dapat diatur besarannya dengan menyesuaikan parameter D. Parameter D dikenal sebagai Duty ratio yaitu rasio antara lamanya waktu switch ditutup (ton) dengan perioda T dari pulsa tegangan keluaran, atau (lihat Gambar 3):
( 3 )(3)
dengan 0 £ D £ 1. Parameter f adalah frekuensi peralihan (switching frequency) yang digunakan dalam mengoperasikan switch. Berbeda dengan tipe linier, pada tipe peralihan tidak ada daya yang diserap pada transistor sebagai switch. Ini dimungkinkan karena pada waktu switch ditutup tidak ada tegangan yang jatuh pada transistor, sedangkan pada waktu switch dibuka, tidak ada arus listrik mengalir. Ini berarti semua daya terserap pada beban, sehingga efisiensi daya menjadi 100%. Namun perlu diingat pada prakteknya, tidak ada switch yang ideal, sehingga akan tetap ada daya yang hilang sekecil apapun pada komponen switch dan efisiensinya walaupun sangat tinggi, tidak akan pernah mencapai 100%.

 

 

Pengubah Buck

Gambar 4 menunjukkan rangkaian dasar dalam metoda Buck. Dalam metoda ini, tegangan keluaran akan lebih rendah atau sama dengan tegangan masukan. Disamping itu, jika pada pengoperasiannya arus yang mengalir melalui induktor selalu lebih besar dari nol (CCM - Continuous Conduction Mode), maka hubungan antara tegangan keluaran dengan tegangan masukan adalah sebagai berikut:
V0 = D . Vin (4)

Gambar 4. Pengubah Buck
Keuntungan pada konfigurasi Buck antara lain adalah efisiensi yang tinggi, rangkaiannya sederhana, tidak memerlukan transformer, tingkatan stress pada komponen switch yang rendah, riak (ripple) pada tegangan keluaran juga rendah sehingga penyaring atau filter yang dibutuhkan pun relatif kecil. Kekurangan yang ditemukan misalnya adalah tidak adanya isolasi antara masukan dan keluaran, hanya satu keluaran yang dihasilkan, dan tingkat ripple yang tinggi pada arus masukan. Metoda Buck sering digunakan pada aplikasi yang membutuhkan sistim yang berukuran kecil.

Pengubah Boost

Jika tegangan keluaran yang dinginkan lebih besar dari tegangan masukan, maka rangkaian Boost dapat dipakai. Topologi Boost terlihat pada Gambar 5. Pada operasi CCM, tegangan keluaran dan tegangan masukan diekspresikan seperti:
( 5 )(5)

Gambar 5. Pengubah boost
Boost juga memiliki efisiensi tinggi, rangkaian sederhana, tanpa transformer dan tingkat ripple yang rendah pada arus masukan. Namun juga Boost tidak memiliki isolasi antara masukan dan keluaran, hanya satu keluaran yang dihasilkan, dan tingkatan ripple yang tinggi pada tegangan keluaran. Aplikasi Boost mencakup misalnya untuk perbaikan faktor daya (Power Factor), dan untuk penaikan tegangan pada baterai

Pengubah Buck-Boost

Metoda Buck-Boost tidak lain adalah kombinasi antara Buck dan Boost, seperti terlihat pada Gambar 6, dimana tegangan keluaran dapat diatur menjadi lebih tinggi atau lebih rendah dari tegangan masukan. Dalam operasi CCM, persamaan tegangan yang dipakai adalah:
( 6 )(6)

Gambar 6. Pengubah Buck-Boost
Yang menarik untuk dicatat dari Buck-Boost adalah bahwa tegangan keluaran memiliki tanda berlawanan dengan tegangan masukan. Oleh karena itu metoda ini pun ditemui pada aplikasi yang memerlukan pembalikan tegangan (voltage inversion) tanpa transformer. Walaupun memiliki rangkaian sederhana, metoda Buck-Boost memiliki kekurangan seperti tidak adanya isolasi antara sisi masukan dan keluaran, dan juga tingkat ripple yang tinggi pada tegangan keluaran maupun arus keluaran.
Pengubah Boost-Buck atau Cuk
Cara lain untuk mengkombinasikan metoda Buck dan Boost dapat dilihat pada Gambar 7 dan dikenal dengan nama Boost-Buck atau Cuk. Seperti halnya metoda Buck-Boost, tegangan keluaran yang dihasilkan dapat diatur menjadi lebih tinggi atau lebih rendah dari tegangan masukan. Persamaan tegangan yang berlaku pada CCM pun sama dengan Buck-Boost (persamaan 6). Metoda Cuk juga digunakan pada aplikasi yang memerlukan pembalikan tegangan (voltage inversion) tanpa transformer, namun dengan kelebihan tingkat ripple yang rendah pada arus masukan maupun arus keluaran.

Jika kombinasi Buck dan Boost diinginkan tanpa adanya proses pembalikan tegangan, maka salah satu pilihannya adalah dengan konfigurasi SEPIC seperti yang terlihat pada gambar 8. Persamaan tegangan CCM yang dipakai untuk SEPIC adalah:
(7)(7)

Gambar 8. Pengubah SEPIC
Keuntungan pada SEPIC dapat disebut misalnya memiliki arus masukan dengan tingkat ripple rendah, tidak memakai transformer, penjagaan kerusakan pada rangkaian melalui kapasitor jika switch gagal berfungsi (capacitive isolation). Kekurangan yang ditemui misalnya tidak adanya isolasi antara sisi masukan dan keluaran serta tegangan keluaran memiliki riple yang tinggi. SEPIC sering digunakan pada aplikasi perbaikan faktor daya (Power Factor).

 

Pengubah Forward

Dalam pengubah Forward, transformer digunakan untuk mengisolasi sisi masukan dari keluaran. Seperti Buck, tegangan keluaran yang dihasilkan lebih rendah atau sama dengan tegangan masukan. Persamaan CCM untuk tegangan keluaran ialah:
( 8 )(8)
Dalam topologinya, pengubah Forward dapat menggunakan satu switch seperti pada Gambar 9 atau dengan dua switch seperti pada Gambar 10. Keduanya memiliki karakteristik tegangan keluaran yang ripplenya rendah, namun ripple arus masukan yang tinggi. Konfigurasi Forward dapat digunakan pada aplikasi yang membutuhkan keluaran lebih dari satu (multiple outputs).

Gambar 9. Pengubah Forward dengan satu switch


Gambar 10. Pengubah Forward dengan dua switch

Pengubah Half Bridge

Konfigurasi lain yang fungsinya serupa dengan Buck namun memiliki isolasi antara sisi masukan dan keluaran dikenal dengan Half Bridge dan Full Bridge. Pada dasarnya, rangkaian half bridge menggunakan dua switch sedangkan pada full bridge menggunakan empat switch. Tegangan keluaran yang dihasilkan Full Bridge adalah dua kali dari Half Bridge pada frekuensi peralihan dan Duty ratio yang sama, dan persamaannya adalah sebagai berikut:
Half Bridge:
(9)
Full Bridge:
10(10)

Gambar 11. Pengubah Half Bridge

Gambar 12. Pengubah Full Bridge
Kedua konfigurasi tersebut sering dimanfaatkan dalam aplikasi tegangan masukan tinggi, tegangan keluaran yang bersih dari ripple dan juga untuk aplikasi daya tinggi (high power). Selain jumlah komponen yang bertambah dibandingkan dengan Buck, kedua konfigurasi ini juga memiliki arus masukan yang tingkat ripplenya tinggi.

Pengubah Push-Pull

Pada Push-Pull, persamaan tegangan yang dipakai sama dengan persamaan untuk Full Bridge, namun bila dilihat dari rangkaiannya, hanya dua switch yang digunakan. Dengan demikian Push-Pull merupakan alternatif yang lebih murah dari Full Bridge pada aplikasi tegangan masukan yang rendah. Sama halnya dengan Full Bridge, pengubah Push-Pull memiliki tegangan keluaran yang rendah tingkat ripplenya, namun cukup tinggi ripple pada arus masukannya.

Gambar 13. Pengubah Push-Pull

Pengubah Flyback

Jika kombinasi yang diinginkan adalah seperti Buck-Boost namun menggunakan isolasi antara sisi masukan dan keluaran, maka konfigurasi yang dapat dipakai adalah Flyback. Persamaan tegangan CCM yang digunakan:
(11)


Gambar 14. Pengubah Flyback
Flyback memiliki ripple yang tinggi pada tegangan keluarannya dan sering dijumpai pada aplikasi daya rendah, dan juga pada aplikasi yang membutuhkan keluaran banyak (multiple outputs).

Kesimpulan

Kilasan tentang beberapa konfigurasi yang umum dipakai untuk metoda pengubahan daya DC-DC tipe peralihan telah dibahas dalam artikel ini. Seperti telah disinggung sebelumnya bahwa pada tipe peralihan, proses pengubahan daya dapat dicapai dengan lebih efisien daripada metoda pengubahan tipe linier. Berkembangnya teknologi pembuatan semikonduktor tidak hanya membuat metoda tipe peralihan menjadi semakin efisien dan murah dimasa mendatang, tetapi juga semakin mendorong bertambah luasnya jenis jenis aplikasi dari tipe peralihan tersebut. Pada akhirnya, dapat dipastikan, bahwa dimasa datang, peranan penting dari tipe peralihan tersebut akan lebih terlihat lagi dampaknya disegala bidang aplikasi baik yang berdaya rendah, medium, atau pun tinggi, mulai dari aplikasi elektronika, mesin, kelistrikan, komunikasi, transportasi sampai pada aplikasi industri lainnya. Oleh karena itu pentingnya pendidikan dan latihan dibidang pengubahan daya pada khususnya dan elektronika daya (Power Electronics) pada umumnya harus lebih digalakkan lagi baik dalam sektor akademis maupun sektor industri. Dengan demikian, dapat diharapkan bahwa Indonesia dimasa mendatang dapat lebih berperan aktif dan turut menyumbang pemikiran dalam pengkajian, penerapan dan pengembangan bidang teknologi elektronika daya tersebut.

Tidak ada komentar:

Posting Komentar