search

Sabtu, 04 September 2010

KOMPONEN DAN SWITCH ELEKTRONIKA DAYA

KOMPONEN DAN SWITCH ELEKTRONIKA DAYA

BAB I. PENDAHULUAN
Sejarah Elektronika Daya
Elektronika daya berawal dari diperkenalkan penyearah busur mercuri 1900, metal tank, grid-cotrolled vacum tube, ignitron, phanotron dan thyratron semua ini untuk kontrol daya hingga tahun 1950. Tahun 1948 ditemukan transistor silikon , kemudian tahun 1956 ditemukan transistor pnpn triggering yang disebut dengan thyristor atau silicon controlled rectifier. Tahun 1958 dikembangkan thyristor komercial oleh general electric company.






Divais Semikonduktor daya
1.                  Power Diodes
2.                  Thyristors
3.                  Power Bipolar Junction Transistors (BJTs)
4.                  Power MOSFETs
5.                  Insulated-Gate Bipolar Transistors (IGBTs)
6.                  Static Induction transistors (SITs)

Diode Daya
1.                  General-purpose diodes: up to 3000V, 3500A
2.                  High speed (or fast-recovery) diodes: up to 3000V, 1000A. reverse recovery time varies between 0.1and 5us
3.                  Schottky



Thyristor
1.                  Forced-commutated thyristor
2.                  Line-commutated thyristor
3.                  Gate-turn-off thyristor (GTO)
4.                  Reverse-conducting thyristor (RCT)
5.                  Static induction thyristor (SITH)
6.                  Gate-assisted turn-off thyristor (GATT)
7.                  Light-activated silicon-controlled rectifier (LASCR)
8.                  MOS-controlled thyristor (MCT)






Penerapan Devais daya




Tipe – tipe rangkaian Elektronika Daya
1.                  Penyearah Diode
2.                  Konverter ac – dc (penyearah terkontrol)
3.                  Konverter ac – ac (kontroller tegangan ac)
4.                  Konverter dc – dc (dc chopper)
5.                  Konverter dc – ac (inverter)
6.                  Saklar/switch statis
 1. Penyearah Diode







2. Konverter ac - dc

3. Konverter ac – ac

4. Konverter dc – dc
5. Inverter
Aplikasi
1.                  Aircraft and space power supplies
2.                  Uninterruptible power supplies
3.                  Variable-frequency ac motor drives
4.                  Aircraft variable-speed constant frequency supplies
5.                  Induction heating supplies

6. Saklar Statis
Karena devais daya dapat dioperasikan sebagai switch atau kontaktor, dengan tegangan sumber dapat berupa tegangan ac atau dc dan switchnya dikenal dengan ac static switches atau dc static switches.
Karakteristik Kontrol Devais pensaklaran Daya


BAB II. ISI
1.      Dioda
Dalam elektronika, dioda adalah komponen aktif bersaluran dua (dioda termionik mungkin memiliki saluran ketiga sebagai pemanas). Dioda mempunyai dua elektroda aktif dimana isyarat listrik dapat mengalir, dan kebanyakan dioda digunakan karena karakteristik satu arah yang dimilikinya. Dioda varikap (VARIable CAPacitor/kondensator variabel) digunakan sebagai kondensator terkendali tegangan.
Sifat kesearahan yang dimiliki sebagian besar jenis dioda seringkali disebut karakteristik menyearahkan. Fungsi paling umum dari dioda adalah untuk memperbolehkan arus listrik mengalir dalam suatu arah (disebut kondisi panjar maju) dan untuk menahan arus dari arah sebaliknya (disebut kondisi panjar mundur). Karenanya, dioda dapat dianggap sebagai versi elektronik dari katup pada transmisi cairan.
Dioda sebenarnya tidak menunjukkan kesearahan hidup-mati yang sempurna (benar-benar menghantar saat panjar maju dan menyumbat pada panjar mundur), tetapi mempunyai karakteristik listrik tegangan-arus taklinier kompleks yang bergantung pada teknologi yang digunakan dan kondisi penggunaan. Beberapa jenis dioda juga mempunyai fungsi yang tidak ditujukan untuk penggunaan penyearahan.
Awal mula dari dioda adalah peranti kristal Cat's Whisker dan tabung hampa (juga disebut katup termionik). Saat ini dioda yang paling umum dibuat dari bahan semikonduktor seperti silikon atau germanium.
Beberapa Jenis-jenis Dioda :
·         Dioda biasa
Simbol diodaBeroperasi seperti penjelasan di atas. Biasanya dibuat dari silikon terkotori atau yang lebih langka dari germanium.
·         Dioda cahaya
 Dioda cahaya atau lebih dikenal dengan sebutan LED (light-emitting diode) adalah suatu semikonduktor yang memancarkan cahaya monokromatik yang tidak koheren ketika diberi tegangan maju. Gejala ini termasuk bentuk elektroluminesensi. Warna yang dihasilkan bergantung pada bahan semikonduktor yang dipakai, dan bisa juga ultraviolet dekat atau inframerah dekat. Simbol LED
·         Dioda foto           
Dioda foto adalah jenis dioda yang berfungsi mendeteksi cahaya. Berbeda dengan dioda biasa, komponen elektronika ini akan mengubah cahaya menjadi arus listrik. Cahaya yang dapat dideteksi oleh dioda foto ini mulai dari cahaya infra merah, cahaya tampak, ultra ungu sampai dengan sinar-X. Aplikasi dioda foto mulai dari penghitung kendaraan di jalan umum secara otomatis, pengukur cahaya pada kamera serta beberapa peralatan di bidang medis. Alat yang mirip dengan Dioda foto adalah Transistor foto (Phototransistor). Transistor foto ini pada dasarnya adalah jenis transistor bipolar yang menggunakan kontak (junction) base-collector untuk menerima cahaya
. Simbol dioda foto
·         Dioda Zener        
Dioda Zener dibuat sedemikian rupa sehingga arus dapat mengalir ke arah yang berlawanan jika tegangan yang diberikan melampaui batas “tegangan rusak” (breakdown voltage) atau “tegangan Zener”. Sebuah dioda Zener memiliki sifat yang hampir sama dengan dioda biasa, kecuali bahwa alat ini sengaja dibuat dengan tengangan rusak yang jauh dikurangi, disebut tegangan Zener. Sebuah dioda Zener memiliki p-n junction yang memiliki doping berat, yang memungkinkan elektron untuk tembus (tunnel) dari pita valensi material tipe-p ke dalam pita konduksi material tipe-n. Sebuah dioda zener yang dicatu-balik akan menunjukan perilaku rusak yang terkontrol dan akan melewatkan arus listrik untuk menjaga tegangan jatuh supaya tetap pada tegangan zener. Sebagai contoh, sebuah diode zener 3.2 Volt akan menunjukan tegangan jatuh pada 3.2 Volt jika diberi catu-balik. Namun, karena arusnya tidak terbatasi, sehingga dioda zener biasanya digunakan untuk membangkitkan tegangan referensi, atau untuk menstabilisasi tegangan untuk aplikasi-aplikasi arus kecil. Simbol dioda zener
·         Dioda Schottky (SCR)
SCR singkatan dari Silicon Control Rectifier. Adalah Dioda yang mempunyai fungsi sebagai pengendali. SCR atau Tyristor masih termasuk keluarga semikonduktor dengan karateristik yang serupa dengan tabung thiratron. Sebagai pengendalinya adalah gate (G). SCR sering disebut Therystor. SCR sebetulnya dari bahan campuran P dan N. Isi SCR terdiri dari PNPN (Positif Negatif Positif Negatif) dan biasanya disebut PNPN Trioda. Simbol SCR

Secara umum karakteristik dioda dapat digambarkan sebagai berikut
~AUT0022

2.      Transistor
Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.
Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.

Cara kerja semikonduktor
Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.
Untuk mengerti cara kerja semikonduktor, misalkan sebuah gelas berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen), tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion) terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah non-konduktor (isolator), karena pembawa muatanya tidak bebas.
Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.
Selain dari itu, silikon dapat dicampur dengan Boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan "lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.
Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).
Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.
Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.
Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat dirubah menjadi isolator, sedangkan metal tidak.
.
Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.
1.   Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.
2.   FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat dirubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut.
3.   Transistor efek-medan semikonduktor logam-oksida (MOSFET) adalah salah satu jenis transistor efek medan. Prinsip dasar perangkat ini pertama kali diusulkan oleh Julius Edgar Lilienfeld pada tahun 1925 . MOSFET mencakup kanal dari bahan semikonduktor tipe-N dan tipe-P, dan disebut NMOSFET atau PMOSFET (juga biasa nMOS, pMOS). Ini adalah transistor yang paling umum pada sirkuit digital maupun analog, namun transistor pertemuan dwikutub pada satu waktu lebih umum.
MOSFET mempunyai tiga terminal : Source (S), Drain (D), dan Gate (G). Karaktersitiknya seperti transistor tetapi lebih tahan terhadap gangguan. Perbedaannya, pada transistor pengendalian komutasi dilakukan dengan arus base (Ib) sedangkan pada MOSFET pengendalian komutasi dilakukan dengan tegangan gate (VGS). Bila kecepatan tinggi diperlukan, maka MOSFET merupakan komponen daya yang terbaik. Tiristor dan t r a n s i s t o r dapat digunakan pada frekuensi 400 Hz – 2 kHz, MOSFET dapat digunakan pada frekuensi 20 kHz. Proses pemadaman dan penyalaan MOSFET kira-kira 80 ns dan daya yang hilang karena proses tersebut sangat kecil. Meskipun demikian MOSFET mempunyai kelemahan karena tidak bisa digunakan untuk daya yang besar dan harganya mahal.

(IGBT = insulated gate bipolar transistor) adalah piranti semikonduktor yang setara dengan gabungan sebuah BJT dan sebuah MOSFET. Jenis peranti baru yang berfungsi sebagai komponen saklar untuk aplikasi daya ini muncul sejak tahun 1980-an.
Karakteristik IGBT
Sesuai dengan namanya, peranti baru ini merupakan peranti yang menggabungkan struktur dan sifat-sifat dari kedua jenis transistor tersebut di atas, BJT dan MOSFET. Dengan kata lain, IGBT mempunyai sifat kerja yang menggabungkan keunggulan sifat-sifat kedua jenis transistor tersebut. Saluran gerbang dari IGBT, sebagai saluran kendali juga mempunyai struktur bahan penyekat (isolator) sebagaimana pada MOSFET.
Masukan dari IGBT adalah terminal Gerbang dari MOSFET, sedang terminal Sumber dari MOSFET terhubung ke terminal Basis dari BJT. Dengan demikian, arus cerat keluar dan dari MOSFET akan menjadi arus basis dari BJT. Karena besarnya resistansi masukan dari MOSFET, maka terminal masukan IGBT hanya akan menarik arus yang kecil dari sumber. Di pihak lain, arus cerat sebagai arus keluaran dari MOSFET akan cukup besar untuk membuat BJT mencapai keadaan jenuh. Dengan gabungan sifat kedua unsur tersebut, IGBT mempunyai perilaku yang cukup ideal sebagai sebuah saklar elektronik. Di satu pihak IGBT tidak terlalu membebani sumber, di pihak lain mampu menghasilkan arus yang besar bagi beban listrik yang dikendalikannya.
Terminal masukan IGBT mempunyai nilai impedansi yang sangat tinggi, sehingga tidak membebani rangkaian pengendalinya yang umumnya terdiri dari rangkaian logika. Ini akan menyederhanakan rancangan rangkaian pengendali dan penggerak dari IGBT.
Di samping itu, kecepatan pensaklaran IGBT juga lebih tinggi dibandingkan peranti BJT, meskipun lebih rendah dari peranti MOSFET yang setara. Di lain pihak, terminal keluaran IGBT mempunyai sifat yang menyerupai terminal keluaran (kolektor-emitor) BJT. Dengan kata lain, pada saat keadaan menghantar, nilai resistansi-hidup (Ron) dari IGBT sangat kecil, menyerupai Ron pada BJT.
Dengan demikian bila tegangan jatuh serta borosan dayanya pada saat keadaan menghantar juga kecil. Dengan sifat-sifat seperti ini, IGBT akan sesuai untuk dioperasikan pada arus yang besar, hingga ratusan Ampere, tanpa terjadi kerugian daya yang cukup berarti. IGBT sesuai untuk aplikasi pada perangkat Inverter maupun Kendali Motor Listrik (Drive).
Sifat-sifat IGBT
Komponen utama di dalam aplikasi elekronika daya dewasa ini adalah saklar peranti padat yang diwujudkan dengan peralatan semikonduktor seperti transistor dwikutub (BJT), transistor efek medan (FET), maupun Thyristor. Sebuah saklar ideal di dalam penggunaan elektronika daya akan mempunyai sifat-sifat sebagai berikut:
  1. pada saat keadaan tidak menghantar (off), saklar mempunyai tahanan yang besar sekali, mendekati nilai tak berhingga. Dengan kata lain, nilai arus bocor struktur saklar sangat kecil
  2. Sebaliknya, pada saat keadaan menghantar (on), saklar mempunyai tahanan menghantar (Ron) yang sekecil mungkin. Ini akan membuat nilai tegangan jatuh (voltage drop) keadaan menghantar juga sekecil mungkin, demikian pula dengan besarnya borosan daya yang terjadi, dan kecepatan pensaklaran yang tinggi.
  • Sifat nomor (1) umumnya dapat dipenuhi dengan baik oleh semua jenis peralatan semikonduktor yang disebutkan di atas, karena peralatan semikonduktor komersial pada umumnya mempunyai nilai arus bocor yang sangat kecil.
  • Untuk sifat nomor (2), BJT lebih unggul dari MOSFET, karena tegangan jatuh pada terminal kolektor-emitor, VCE pada keadaan menghantar (on) dapat dibuat sekecil mungkin dengan membuat transitor BJT berada dalam keadaan jenuh.
  • Sebaliknya, untuk unsur kinerja nomor (3) yaitu kecepatan pensakelaran, MOSFET lebih unggul dari BJT, karena sebagai peranti yang bekerja berdasarkan aliran pembawa muatan mayoritas, pada MOSFET tidak dijumpai arus penyimpanan pembawa muatan minoritas pada saat proses pensaklaran, yang cenderung memperlamnat proses pensaklaran tersebut.


Sejak tahun 1980-an telah muncul jenis divais baru sebagai komponen sakelar untuk aplikasi elektronika daya yang disebut sebagai Insulated Gate Bipolar Transistor (IGBT).
Sesuai dengan yang tercermin dari namanya, divais baru ini merupakan divais yang menggabungkan struktur dan sifat-sifat dari kedua jenis transistor tersebut di atas, BJT dan MOSFET. Dengan kata lain, IGBT mempunyai sifat kerja yang menggabungkan keunggulan sifat-sifat kedua jenis transistor tersebut. Terminal gate dari IGBT, sebagai terminal kendali juga mempunyai struktur bahan penyekat (insulator) sebagaimana pada MOSFET.
Dengan demikian, terminal masukan IGBT mempunyai nilai impedansi yang sangat tinggi, sehingga tidak membebani rangkaian pengendalinya yang umumnya terdiri dari rangkaian logika. Ini akan menyederhanakan rancangan rangkaian pengendali (controller) dan penggerak (driver) dari IGBT.
Di samping itu, kecepatan pensakelaran IGBT juga lebih tinggi dibandingkan divais BJT, meskipun lebih rendah dari divais MOSFET yang setara. Di lain pihak, terminal keluaran IGBT mempunyai sifat yang menyerupai terminal keluaran (kolektor-emitter) BJT. Dengan kata lain, pada saat keadaan menghantar, nilai tahanan menghantar (R_on) dari IGBT sangat kecil, menyerupai R_on pada BJT.
Dengan demikian bilai tegangan jatuh serta lesapan dayanya pada saat keadaan menghantar juga kecil. Dengan sifat-sifat seperti ini, IGBT akan sesuai untuk dioperasikan pada arus yang besar, hingga ratusan amper, tanpa terjadi kerugian daya yang cukup berarti. IGBT sesuai untuk aplikasi pada perangkat Inverter maupun Kendali Motor Listrik (Drive).
Pada tahun-tahun yang lalu, gelanggang piranti penyakelar daya (switching device) memang didominasi oleh transistor, juga SCR yang sulit untuk dimatikan serta bekerja relatif lambat. Kondisi ini mendorong para perancang di berbagai laboratorium pembuatan piranti semikonduktor seperti di Motorola, IR, APT, IXYS, Siemens, Samsung dan lainnya saling berlomba untuk menemukan piranti penyakelar yang memiliki kemampuan lebih baik. Sebagai hasilnya, di pasaran, kini muncul piranti penyakelar Power MOSFET dan IGBT yang saling bersaing.
Para rekayasawan yang berkecimpung di bidang elektronika daya pun kini dihadapkan pada suatu pilihan yang perlu lebih cermat dalam mempertimbangkan beberapa kriteria, saat harus memilih mana dari kedua piranti elektronik tersebut yang akan dipakai.
MOSFET (Metal Oxide Semiconductor Field Efect Transistor) maupun IGBT (Insulated Gate Bipolar Transistor), keduanya merupakan piranti atau komponen aktif pokok yang kini banyak digunakan dalam bidang Elektronika Daya; yakni UPS (Uninterruptible Power Supply), dan sistem pengendali daya/motor-motor besar di bidang industri.
Sebelum adanya kemajuan kinerja Power MOSFET, gelanggang penyakelar daya dulunya memang didominasi oleh BJT (bipolar junction transistor), dan SCR yang sulit untuk dimatikan (turn-off) dan lambat. Para perancang di berbagai laboratorium pembuatan piranti semikonduktor selalu berusaha menemukan piranti penyakelar (switching device) yang memiliki kemampuan lebih baik. Beberapa waktu kemudian, barulah dikembangkan MOSFET, dan berikutnya IGBT.
Sebenarnya, pasar pun pernah ditawari MCT (MOS-Controlled Thyristor), yang saat itu merupakan semikonduktor yang memiliki kinerja terbaik untuk daya tinggi dan tegangan tinggi, tetapi kenyataannya tak pernah menjadi populer. Kini pabrik-pabrik semikonduktor terus mengembangkan kedua piranti tersebut di atas menuju peningkatan dalam hal mempertinggi tegangan dadal (breakdown voltage), memperbesar kemampuan arusnya, dan memperkecil rugi penyakelaran atau peralihannya .
IGBT memang telah muncul sebagai pesaing bagi Power MOSFET konvensional yang beroperasi pada tegangan tinggi dan rugi konduksi yang rendah. Berbagai usaha telah dilakukan dalam tahun-tahun terakhir ini untuk dapat membuat penyakelar IGBT dapat bekerja seperti halnya MOSFET, sembari mendapatkan kemampuan yang setara dengan transistor daya bipolar, baik yang bekerja pada tegangan menengah maupun tegangan tinggi. Para pembuat IGBT memang sedang berusaha untuk membuat piranti elektronik ini menjadi pilihan alternatif yang menarik untuk rentang yang luas di bidang elektronika daya, tempat yang semula didominasi oleh power MOSFET dan transistor bipolar. Dampaknya, para rekayasawan yang berkecimpung di bidang elektronika dayapun kini dihadapkan pada suatu pilihan yang perlu lebih cermat dalam mempertimbangkan beberapa kriteria, saat memilih mana dari kedua piranti elektronik tersebut yang akan dipergunakan. Sebab, seri-seri baru kini terus bermunculan di pasaran, beserta masing-masing keunggulannya.
THYRISTOR
Thyristor berakar kata dari bahasa Yunani yang berarti ‘pintu’. Dinamakan demikian barangkali karena sifat dari komponen dasar elektronika ini yang mirip dengan pintu yang dapat dibuka dan ditutup untuk melewatkan arus listrik. Ada beberapa komponen elektronika yang termasuk thyristor antara lain PUT (programmable uni-junction transistor), UJT (uni-junction transistor ), GTO (gate turn off switch), photo SCR dan sebagainya. Namun pada kesempatan ini, yang akan kemukakan adalah komponen-komponen thyristor yang dikenal dengan sebutan SCR (silicon controlled rectifier), TRIAC dan DIAC. Pembaca dapat menyimak lebih jelas bagaimana prinsip kerja serta aplikasinya.
THYRISTOR merupakan komponen yang dapat mengeluarkan emisi cahaya. LED merupakan produk temuan lain setelah dioda. Strukturnya juga sama dengan dioda, tetapi belakangan ditemukan bahwa elektron yang menerjang sambungan P-N juga melepaskan energi berupa energi panas dan energi cahaya. LED dibuat agar lebih efisien jika mengeluarkan cahaya. Untuk mendapatkan emisi cahaya pada semikonduktor, doping yang pakai adalah galium, arsenic dan phosporus. Jenis doping yang berbeda menghasilkan warna cahaya yang berbeda pula.
Pada saat ini warna-warna cahaya LED yang banyak ada adalah warna merah, kuning dan hijau.LED berwarna biru sangat langka. Pada dasarnya semua warna bisa dihasilkan, namun akan menjadi sangat mahal dan tidak efisien. Dalam memilih LED selain warna, perlu diperhatikan tegangan kerja, arus maksimum dan disipasi dayanya. Tyristor merupakan salah satu saklar yang paling sederhana yang sering digunakan. Komponen ini mempunya tiga terminal / kaki : Anoda (A), Katoda (K) dan Gate (G). Arus dapat mengalir dari anoda ke katoda apabila kaki pada gate tyristor diberi sinyal kendali berupa arus listrik pada saat tegangan pada kaki anoda lebih besar daripada tyristor, Va positip.(Apabila tegangan pada katoda lebih besar daripada anoda tyristor bersifat seperti dioda : tak bisa dikendalikan). Setelah Tyristor konduksi, selama tegangan Va masih positip arus akan tetap mengalir meskipun kaki pada gate tyristor tidak diberikan arus lagi. Untuk memeadamkannya, arus anoda diperkecil  (60 mA) selama waktu tertentu (50 – 100 us). Kelebihan dari tyristor adalah robas, tahan lama, susah rusak dan memiliki rating arus dan tegangan yang besar.
Struktur Thyristor
Ciri-ciri utama dari sebuah thyristor adalah komponen yang terbuat dari bahan semiconductor silicon. Walaupun bahannya sama, tetapi struktur P-N junction yang dimilikinya lebih kompleks dibanding transistor bipolar atau MOS. Komponen thyristor lebih digunakan sebagai saklar (switch) ketimbang sebagai penguat arus atau tegangan seperti halnya transistor. Struktur dasar thyristor adalah struktur 4 layer PNPN seperti yang ditunjukkan pada gambar-1a. Jika dipilah, struktur ini dapat dilihat sebagai dua buah struktur junction PNP dan NPN yang tersambung di tengah seperti pada gambar-1b. Ini tidak lain adalah dua buah transistor PNP dan NPN yang tersambung pada masing-masing kolektor dan base.

Tidak ada komentar:

Posting Komentar